Infinitesimal symmetries of weakly pseudoconvex manifolds
نویسندگان
چکیده
We consider weakly pseudoconvex hypersurfaces with polynomial models in $${\mathbb {C}}^N$$ and their symmetry algebras. In the most prominent case of special models, given by sums squares polynomials, we give complete classification. particular, prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor they real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. also partial results general more detailed description graded components dimension three. The provide an important necessary step solving equivalence problem manifolds.
منابع مشابه
On Weakly Pseudoconvex Cr Manifolds of Dimension 3
Let M be a compact, COO CR manifold of dimension 3 over R. Associated to the CR structure is a first-order differential operator, Db' on M. We study the regularity properties, in terms of L P Sobolev and Holder norms, of the equation Db u = f. M is said to be CR if there is given a COO sub-bundle, denoted T I .o M , of the complexified tangent bundle TM, such that each fiber T~'o M is of dimens...
متن کاملOn Analytic Interpolation Manifolds in Boundaries of Weakly Pseudoconvex Domains
Let Ω be a bounded, weakly pseudoconvex domain in Cn, n ≥ 2, with real-analytic boundary. A real-analytic submanifold M ⊂ ∂Ω is called an analytic interpolation manifold if every real-analytic function on M extends to a function belonging to O(Ω). We provide sufficient conditions for M to be an analytic interpolation manifold. We give examples showing that neither of these conditions can be rel...
متن کاملTorus Actions on Weakly Pseudoconvex Spaces
We show that the univalent local actions of the complexification of a compact connected Lie group K on a weakly pseudoconvex space where K is acting holomorphically have a universal orbit convex weakly pseudoconvex complexification. We also show that if K is a torus, then every holomorphic action of K on a weakly pseudoconvex space extends to a univalent local action of KC.
متن کاملEmbeddability of Some Strongly Pseudoconvex Cr Manifolds
We obtain an embedding theorem for compact strongly pseudoconvex CR manifolds which are bounadries of some complete Hermitian manifolds. We use this to compactify some negatively curved Kähler manifolds with compact strongly pseudoconvex boundary. An embedding theorem for Sasakian manifolds is also derived.
متن کاملHolomorphic Approximation on Compact Pseudoconvex Complex Manifolds
Let M be a smoothly bounded compact pseudoconvex complex manifold of finite type in the sense of D’Angelo such that the complex structure of M extends smoothly up to bM . Let m be an arbitrary nonnegative integer. Let f be a function in H(M) ∩Hm(M), where Hm(M) is the Sobolev space of order m. Then f can be approximated by holomorphic functions on M in the Sobolev space Hm(M). Also, we get a ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2021
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-021-02873-w